Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
J Pathol ; 257(2): 198-217, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-1664431

Реферат

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , Megakaryocytes , Myenteric Plexus , Neurons
2.
Lancet Microbe ; 1(6): e245-e253, 2020 10.
Статья в английский | MEDLINE | ID: covidwho-1065709

Реферат

BACKGROUND: Severe COVID-19 has a high mortality rate. Comprehensive pathological descriptions of COVID-19 are scarce and limited in scope. We aimed to describe the histopathological findings and viral tropism in patients who died of severe COVID-19. METHODS: In this case series, patients were considered eligible if they were older than 18 years, with premortem diagnosis of severe acute respiratory syndrome coronavirus 2 infection and COVID-19 listed clinically as the direct cause of death. Between March 1 and April 30, 2020, full post-mortem examinations were done on nine patients with confirmed COVID-19, including sampling of all major organs. A limited autopsy was done on one additional patient. Histochemical and immunohistochemical analyses were done, and histopathological findings were reported by subspecialist pathologists. Viral quantitative RT-PCR analysis was done on tissue samples from a subset of patients. FINDINGS: The median age at death of our cohort of ten patients was 73 years (IQR 52-79). Thrombotic features were observed in at least one major organ in all full autopsies, predominantly in the lung (eight [89%] of nine patients), heart (five [56%]), and kidney (four [44%]). Diffuse alveolar damage was the most consistent lung finding (all ten patients); however, organisation was noted in patients with a longer clinical course. We documented lymphocyte depletion (particularly CD8-positive T cells) in haematological organs and haemophagocytosis. Evidence of acute tubular injury was noted in all nine patients examined. Major unexpected findings were acute pancreatitis (two [22%] of nine patients), adrenal micro-infarction (three [33%]), pericarditis (two [22%]), disseminated mucormycosis (one [10%] of ten patients), aortic dissection (one [11%] of nine patients), and marantic endocarditis (one [11%]). Viral genomes were detected outside of the respiratory tract in four of five patients. The presence of subgenomic viral RNA transcripts provided evidence of active viral replication outside the respiratory tract in three of five patients. INTERPRETATION: Our series supports clinical data showing that the four dominant interrelated pathological processes in severe COVID-19 are diffuse alveolar damage, thrombosis, haemophagocytosis, and immune cell depletion. Additionally, we report here several novel autopsy findings including pancreatitis, pericarditis, adrenal micro-infarction, secondary disseminated mucormycosis, and brain microglial activation, which require additional investigation to understand their role in COVID-19. FUNDING: Imperial Biomedical Research Centre, Wellcome Trust, Biotechnology and Biological Sciences Research Council.


Тема - темы
COVID-19 , Mucormycosis , Pancreatitis , Pericarditis , Thrombosis , Acute Disease , COVID-19/epidemiology , Humans , Infarction/pathology , Lung/pathology , Mucormycosis/pathology , Pancreatitis/pathology , Pericarditis/pathology , SARS-CoV-2 , Thrombosis/pathology , United Kingdom/epidemiology , Viral Tropism
3.
J Pathol ; 252(4): 346-357, 2020 12.
Статья в английский | MEDLINE | ID: covidwho-754748

Реферат

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in an urgent need to understand the pathophysiology of SARS-CoV-2 infection, to assist in the identification of treatment strategies. Viral tissue tropism is an active area of investigation, one approach to which is identification of virus within tissues by electron microscopy of post-mortem and surgical specimens. Most diagnostic histopathologists have limited understanding of the ultrastructural features of normal cell trafficking pathways, which can resemble intra- and extracellular coronavirus; in addition, viral replication pathways make use of these trafficking pathways. Herein, we review these pathways and their ultrastructural appearances, with emphasis on structures which may be confused with coronavirus. In particular, we draw attention to the fact that, when using routine fixation and processing, the typical 'crown' that characterises a coronavirus is not readily identified on intracellular virions, which are located in membrane-bound vacuoles. In addition, the viral nucleocapsid is seen as black dots within the virion and is more discriminatory in differentiating virions from other cellular structures. The identification of the viral replication organelle, a collection of membranous structures (convoluted membranes) seen at a relatively low scanning power, may help to draw attention to infected cells, which can be sparse. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Тема - темы
COVID-19/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Animals , Humans , Virion/ultrastructure , Virus Replication/genetics
Критерии поиска